

L'Analyse de Cycle de Vie (ACV) avec MEANS InOut

Webinaire #1

16 Octobre 2025

means-info@inrae.fr

Le webinaire est enregistré

Vos questions et votre nom pourront apparaitre

Programme webinaire

- ▶ Présentation de la plateforme d'évaluation multicritère MEANS
- ► MEANS InOut dans le "paysage" ACV
- ▶ Que peut-on modéliser avec MEANS-InOut?
- ► MEANS InOut, un logiciel qui génère les ICVs
- ► Témoignage utilisateurs :
 - Bureau d'étude
 - Recherche
 - Institut Technique
- ► Formation & accès à MEANS InOut
- ► Perspectives
- ▶ **Q&A** Posez vos questions au fil de l'eau

Intervenants

Chercheuse ACV Codirectrice Plateforme MEANS

Ingénieur de recherche -Plateforme MEANS

Responsable informatique Codirectrice Plateforme MEANS

Cheffe de produit ACV Eco-conception

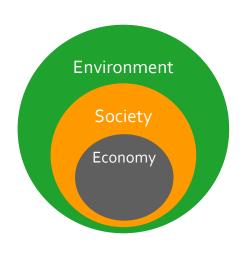
Chercheuse en Ecoconception des aliments

Responsable projets évaluation environnementale

Présentation de la plateforme MEANS

Caroline MALNOE –
Codirectrice Plateforme MEANS

16 Octobre 2025


Plateforme d'évaluation multicritère de la durabilité

Ensemble d'outils informatiques
pour réaliser des analyses multicritères de la durabilité
des systèmes de production végétale, animale et de
transformation des produits agricoles

Les ambitions de la plateforme

Accompagner les évaluations multicritères de la durabilité, des systèmes agricoles - végétal, animal, aquacole - et de transformation des produits agricoles

Origine et partenariat

Créée en 2012 par l'INRA pour mutualiser les méthodes et outils entre scientifiques

Soutenue par 8 départements INRAE pour une expertise interdisciplinaire.

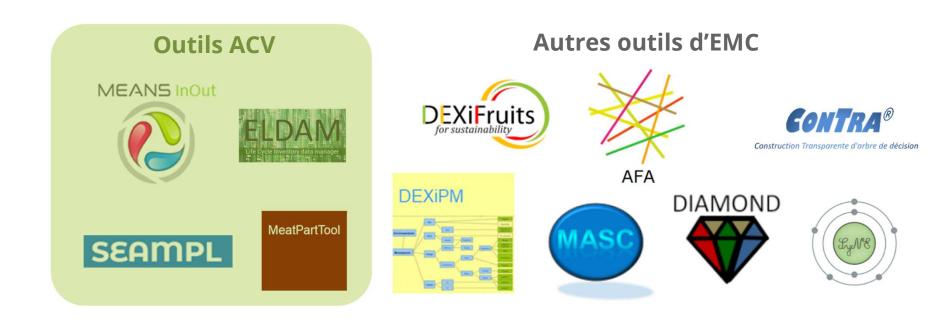
Partenariat avec l'ADEME depuis 2014

Co-développement avec le CIRAD depuis 2018 pour améliorer l'évaluation multicritère.

Portail MEANS: means.inrae.fr

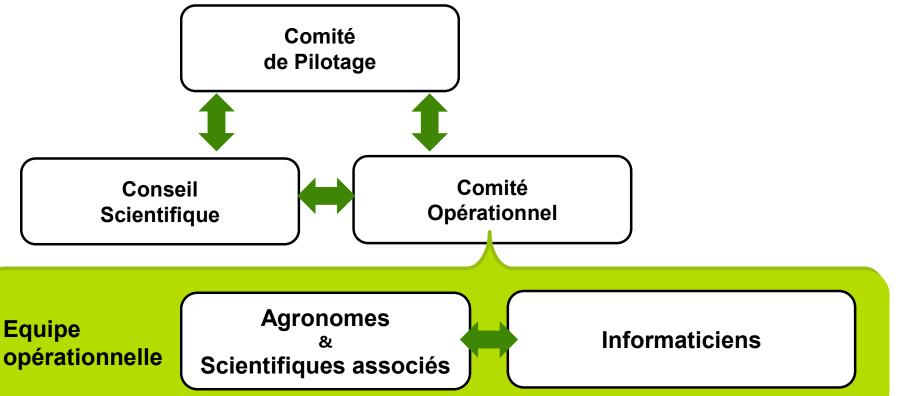
Q

Méthodes et outils de références


Documentation, Supports

Coming soon: Aide au choix

De la mise à disposition d'outils d'Evaluation MuliCritères ... jusqu'au développement d'outil intégrés



Gouvernance plateforme MEANS

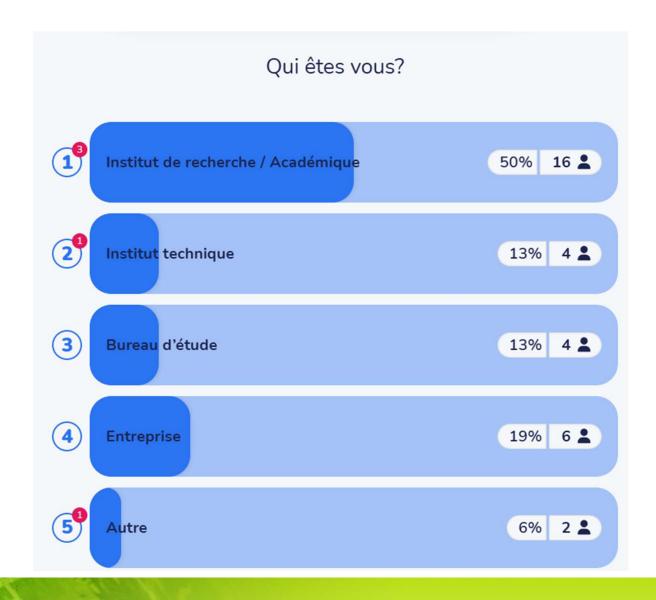
MEANS-InOut Un outil ACV en ligne

Outil de collecte de données et de calcul des émissions directes jusqu'à la production d'un **inventaire de cycle de vie** pour le calcul des indicateurs d'impact environnemental.

Sondage participants

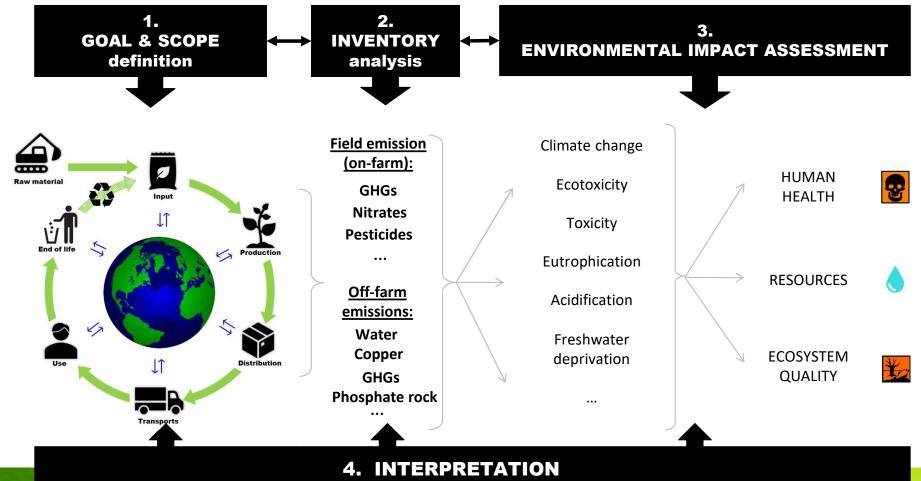
Qui êtes vous?

- > Institut de recherche / Académique
- > Institut technique
- > Bureau d'étude
- > Entreprise
- > Autre



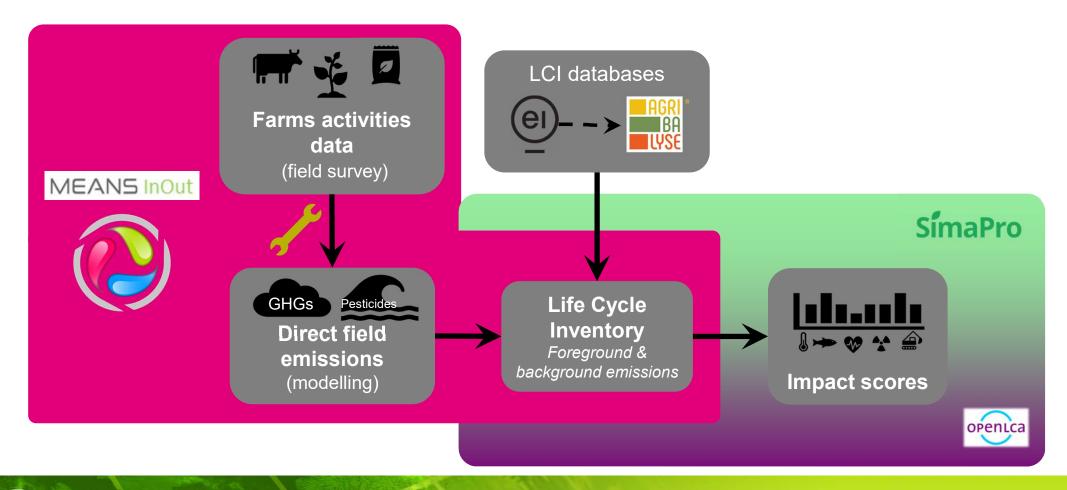
- 1 Allez sur wooclap.com
- 2 Entrez le code d'événement dans le bandeau supérieur

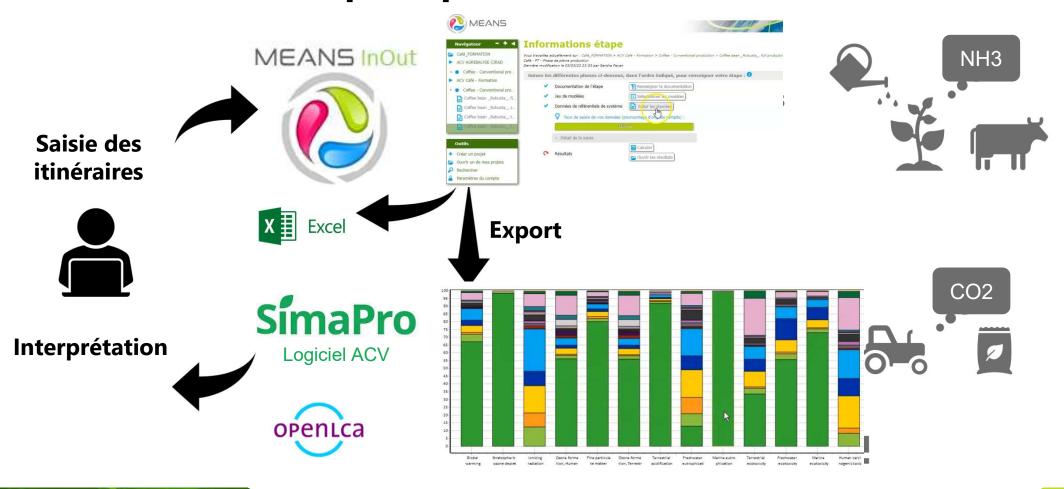
Résultat sondage


Positionnement de MEANS dans le "paysage ACV"

Sandra PAYEN
Codirectrice Plateforme MEANS

16 Octobre 2025


MEANS InOut et les étapes de l'ACV


MEANS InOut et les étapes de l'ACV SímaPro openica 2. 1. **INVENTORY GOAL & SCOPE ENVIRONMENTAL IMPACT ASSESSMENT** analysis definition MEANS Inout Field emission Climate change (on-farm): HUMAN **Ecotoxicity GHGs** HEALTH **Nitrates** Toxicity **Pesticides** Eutrophication **RESOURCES** Off-farm Acidification emissions: Water Freshwater Copper **ECOSYSTEM** deprivation * QUALITY **GHGs Phosphate rock** 4. INTERPRETATION

MEANS InOut et logiciels ACV

MEANS InOut en pratique

Les atouts de MEANS InOut pour l'inventaire

Quelles données collecter pour une ACV agricole?

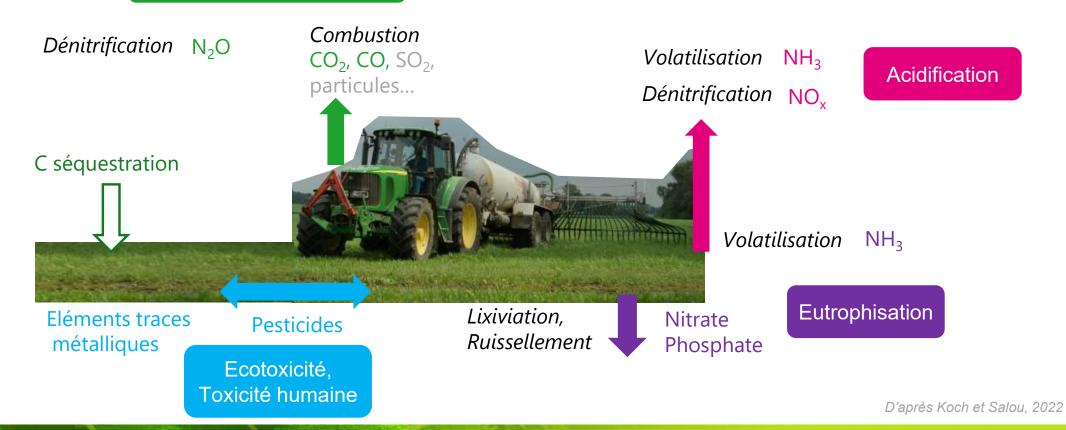
Formulaires avec listes déroulantes

> Comment modéliser les émissions de polluants? lixiviation de nitrate, volatilisation ammoniac, émission de GES...

Comment structurer toutes ces informations?

Structure "standardisée"

Quelles données mobiliser dans les bases de données pour estimer les impacts des intrants?


Lien avec les BDD automatique lors de l'import dans Simapro

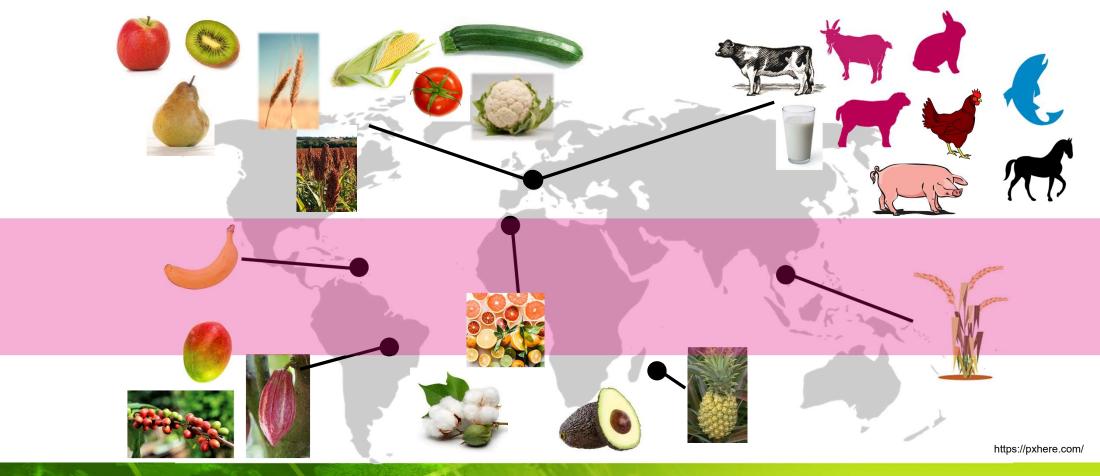
adapté de Julie A. INRAE

Emissions prises en compte – exemple Prod. végétales

Changement Climatique

Que peut on modéliser avec MEANS InOut?

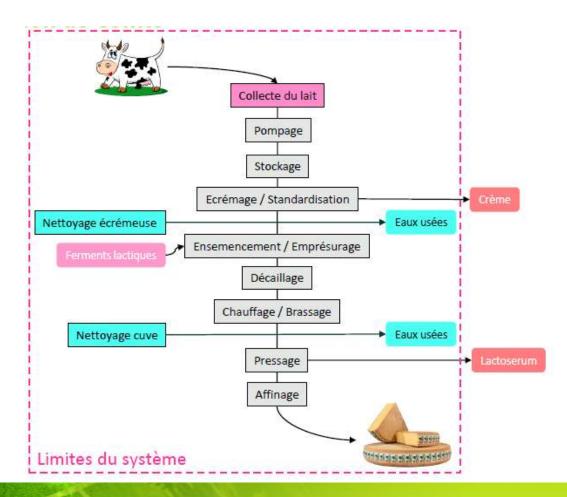
Paul LARDOUX
Agronome Plateforme MEANS



16 Octobre 2025

MEANS InOut Périmètre géographique

Périmètre géographique



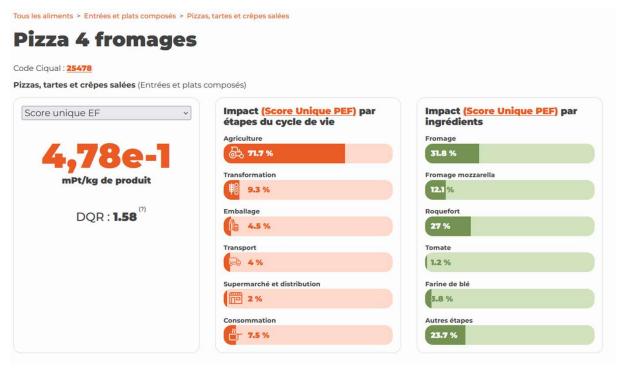
MEANS InOut

Transformation de bioproduits à vocation

<u>alimentaire</u>

On peut modéliser la production de Comté par exemple

MEANS InOut, un logiciel qui génère les ICVs


... pour AGRIBALYSE notamment

16 Octobre 2025

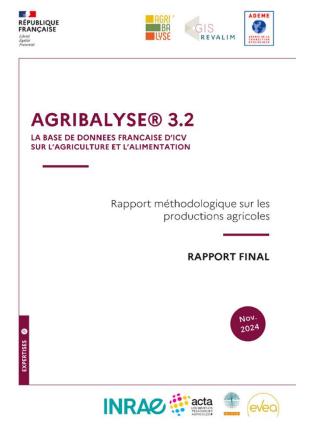
AGRIBALYSE une BDD ACV française

- ► + de 2500 produits alimentaires prêts à être consommés
- ► + de 300 produits agricoles bruts sortie ferme

1Pt = impact environnemental annuel d'un habitant européen

AGRIBALYSE : cadre méthodologique de MEANS InOut

Unité fonctionnelle:

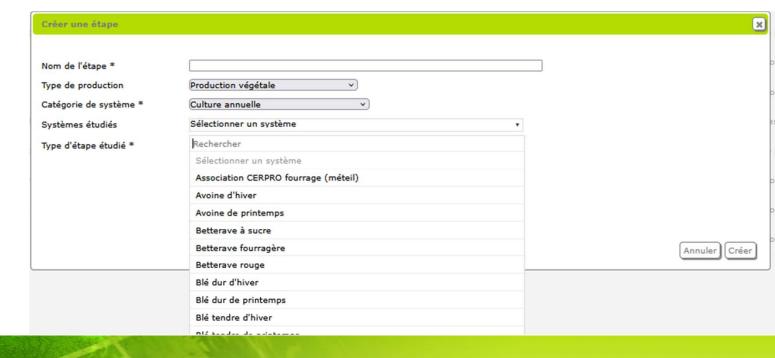

Produire 1 kg de culture ou de poids vif

Périmètre du système :

Du berceau à la porte de la ferme (agricole)

Unité de collecte :

1 ha ou 1 classe d'animaux


"AGRIBALYSE® version 3.2 " https://doi.org/10.57745/XTENSJ

MEANS InOut

1. Le système étudié Un choix qui conditionne les formulaires de saisie et modèles proposés

- ✓ Production végétale
- ✓ Production animale
- ✓ Production aquacole
- ✓ Procédés de transformation des produits agricoles à vocation alimentaire

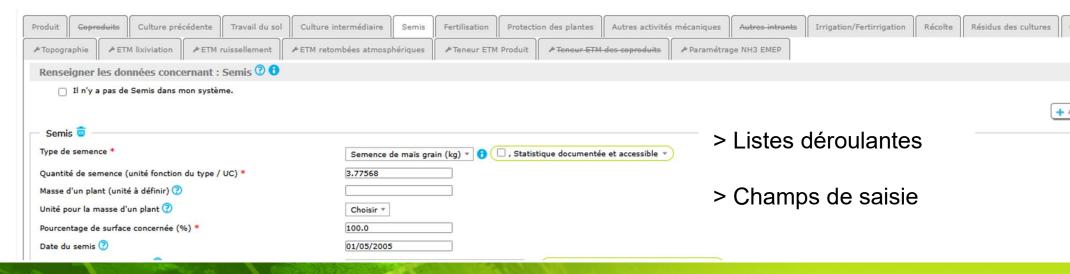
2. Modèles d'émissions intégrés

- 1. Présélection des modèles <u>applicables</u> en fonction du système étudié
- 2. Choix du modèle en fonction de :
 - ✓ Localisation
 - ✓ Objectif de l'étude

Objectif:
Créer des moyennes
nationales

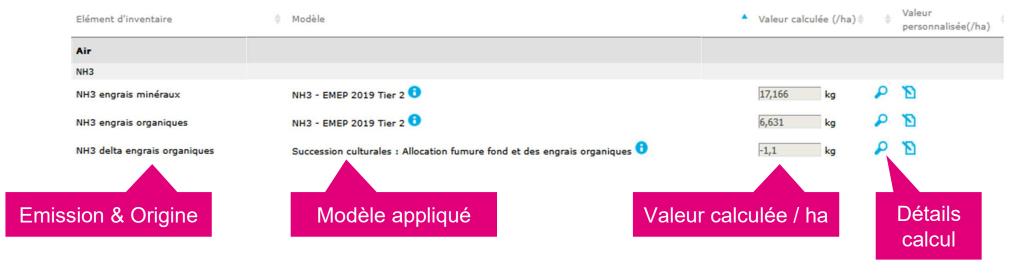
> Modèles AGRIBALYSE

Objectif: **Discriminer des systèmes**

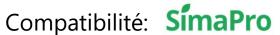

> Modèle Indigo-N prenant en compte les conditions de milieux

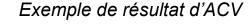
3. Saisie des données

- ✓ ITK en production végétale
- ✓ Gestion troupeau en production animale
- ✓ Chaine de production en transformation

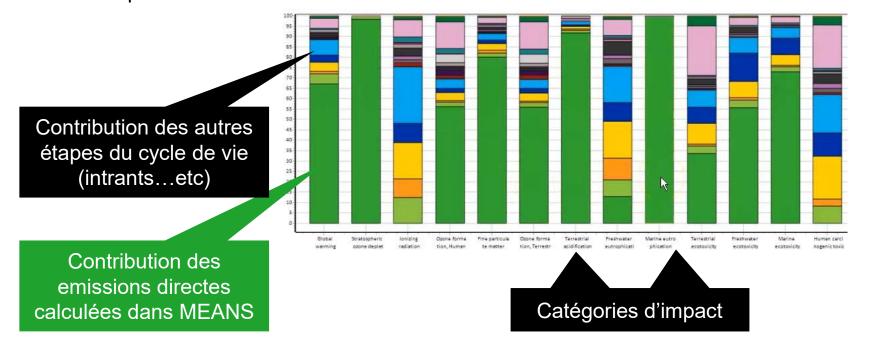


4. Résultats : Quantification des émissions directes vers l'eau, l'air le sol

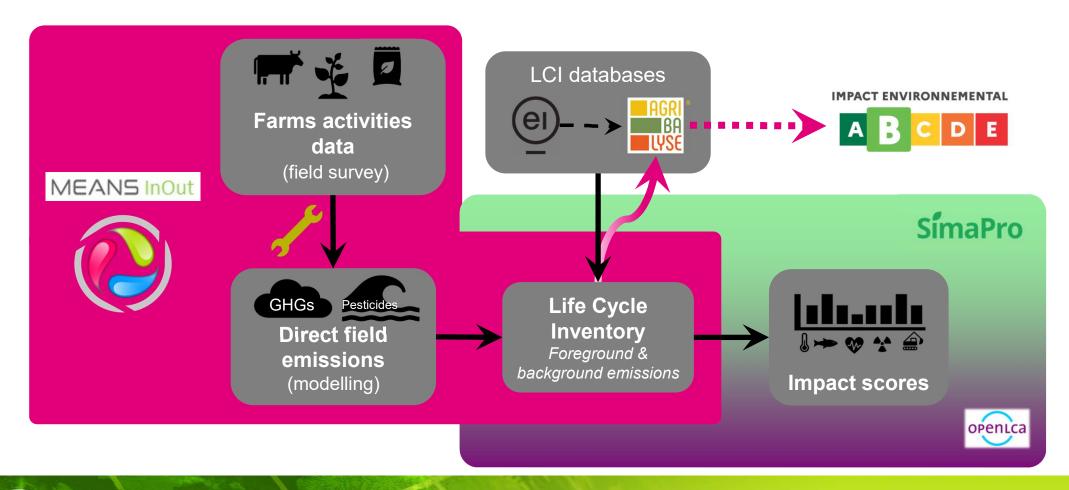


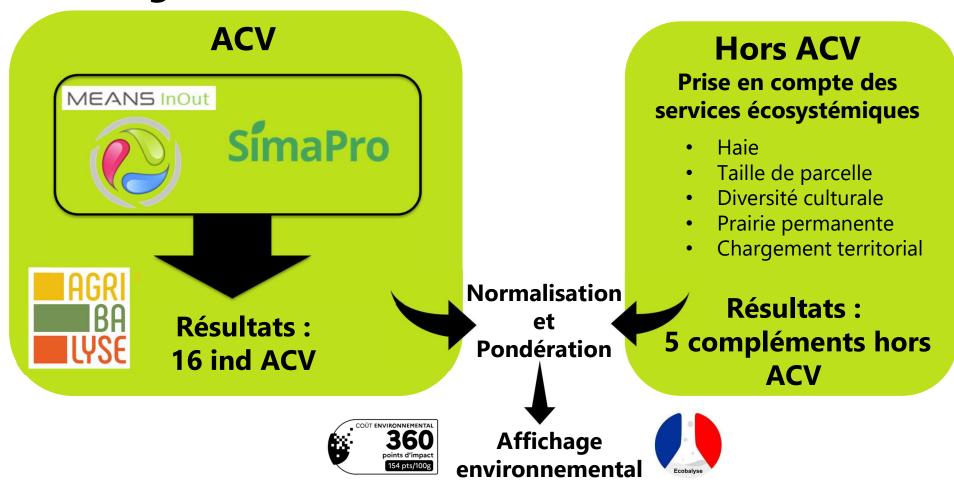

5. Export vers un logiciel d'ACV

MEANS In Out



Bases de données d'arrière plan:





Les ICVs AGRIBALYSE sont générés par MEANS-InOut

L'affichage environnemental

MEANS InOut

MEANS InOut : un outil en amélioration constante

Un gradient de complexité des développements envisagés

Ajout nouvel intrant agricole

Ajout d'une culture « similaire »

Ajout d'une culture agroforestière

Ajout / couplage d'indicateurs

Développement simple et rapide

Développement complexe et chronophage

Vos projets peuvent aider au développement de MEANS InOut

Témoignages utilisateurs et contributeurs

Témoignage utilisateur MEANS InOut

Marine CHOTARD

Cheffe de produit ACV Eco-conception – O2m

16 Octobre 2025

Introduction - Contexte

Quel type d'ACV ? • ACV simplifiée

- ACV conforme aux ISO 14040 et 14044
- ACV attributionnelle

Innover, explorer, accompagner l'agriculture durable

Avec l'utilisation de

Innover

Créer de nouvelles méthodes et outils pour mesurer et réduire l'impact environnemental.

Explorer

Analyser les filières agricoles pour identifier les leviers d'action les plus efficaces.

Accélérer

Accompagner les acteurs du secteur pour passer rapidement des idées aux solutions concrètes.

Partager

Diffuser les connaissances et bonnes pratiques pour que l'innovation profite à tous.

Présentation d'un cas d'étude concret : l'horticulture

Matériel & Méthode

CAS D'ÉTUDE

Calculer et améliorer l'impact environnemental de la filière horticole

tape 1

• Étude de la méthodologie Hortifootprint

 Création du fichier de collecte sur Excel

Test CNPH

Étape 2

 Développement de la partie horticole sur Means par l'INRAE

Communication

MATERIEL & MÉTHODES

- Excel:
 - Collecte des données
 - Calcul des émissions directes à partir de facteurs d'émission, sans recours à Means in Out
- SimaPro :
 - Intégration des données, choix des processus unitaires issus des bases (ecoinvent, Agribalyse),
 - Construction du système et calcul des impacts
- Ressources bibliographiques :
 - Littérature scientifique et technique: complétude de données et justification d'hypothèses

Présentation d'UN cas d'étude concret : l'horticulture

Matériel & Méthode

CAS D'ÉTUDE

Calculer et améliorer l'impact environnemental de la filière horticole

tape 1

- Étude de la méthodologie Hortifootprint
- Création du fichier de collecte sur Excel
- Test CNPH

Étape 2

- Développement de la partie horticole sur Means par l'INRAE
- Communication

MISE EN PLACE DE LA STRUCTURE DANS MEANS

- Définition des types de produits horticoles : fleur coupée, plante en pot, bulbe
- Intrants spécifiques à l'horticulture
- Mode de production (pleine terre, hors-sol, sous abri)

MODÈLES D'ÉMISSIONS DIRECTES (ENGRAIS, TOURBE, ...)

- Choix des modèles
- Paramètres pédoclimatiques par département nécessaires aux modèles
- Traduction en tableur Excel pour une intégration plus facile par l'équipe informatique de MEANS

AJOUT DE RÉFÉRENCES : intrants plastiques, substrat, ...

Présentation d'un cas d'étude concret

Résultats

Test auprès de 18 horticulteurs

Résultats de l'opération:

- Identification des principaux postes d'impact :
 - énergie (chauffage, électricité), substrats, fertilisation, emballages.
- Forte variabilité de résultats entre exploitations.
- Production de fiches ACV et d'indicateurs pour la filière.

Difficultés

- Bases de données peu adaptées à l'horticulture
- Collecte de données parfois lourde pour les producteurs
- Diversité de scénarios, collecte de données, écoconception engageant l'ensemble de la filière

La suite?

Création d'un programme de formation en ACV horticole

Considérations techniques pour le suivi des impacts en horticulture

	Agriculture	Horticulture
Méthodologie suivie	Agribalyse (Fr)	Hortifootprint (UE) / FloriPEFCR
Périmètre	Sortie champs	Du berceau à la tombe
Modèle de calcul	Choix sur Means	
Unité de collecte	ha ou cheptel	La production de pot totale
Unité fonctionnelle	Kg	La pièce (pot, tige)
Données collectées	Données brutes et calculs intermédiaires différents	
Catégorisation des postes d'émissions	Catégories différentes	
Choix des indicateurs	6 indicateurs	8 indicateurs + score unique

- Allocations complexes : occupation du sol et durée de cycle
- Énergie : suivi de la consommation sur toutes les étapes de production et stockage.
- Plastiques et fin de vie des intrants : postes critiques, variabilité élevée.

Atouts et limites de MEANS

AVANTAGES:

- · Confidentialité des données
- · Amélioration continue constante
- · Adaptation aux remontées terrain
- Robustesse scientifique
- Multi-filières
- · Outil documenté

LIMITES:

- Découpage en sous-étapes selon la production (sous abri / plein champ) avec des modèles d'émissions adaptés à chaque situation.
- Création et définition des intrants, avec précision de leurs unités (ex. : substrats)
- Limite des bases de données existantes en horticulture
- · Interface Means accès « Recherche »

LES PERSPECTIVES

Légitimité

Outil scientifiquement robuste, reconnu comme pertinent pour le calcul des émissions directes en ACV

Diversité & Précision

Dispositif évolutif, capable d'intégrer de nouvelles filières tout en affinant celles existantes

Volumétrie

Une API interopérable, conçue pour se connecter à d'autres outils numériques et simplifier la collecte des données brutes d'ICV

Merci pour votre attention

Témoignage utilisateur MEANS InOut

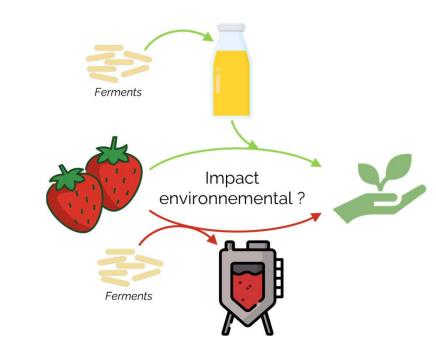
Caroline PENICAUD
Chercheuse en Eco-conception des aliments - INRAE

16 Octobre 2025

Introduction - Contexte

- Attentes des consommateurs en matière d'aliments plus naturels (c'est-à-dire sans additifs et peu transformés) (Román et al., 2017)
- **Biopréservation** (utilisation de micro-organismes ou de leurs métabolites pour prolonger la durée de conservation des aliments) perçue comme une alternative naturelle et durable (Battacchi et al., 2020)
- Peu de connaissances sur les impacts environnementaux de ces processus

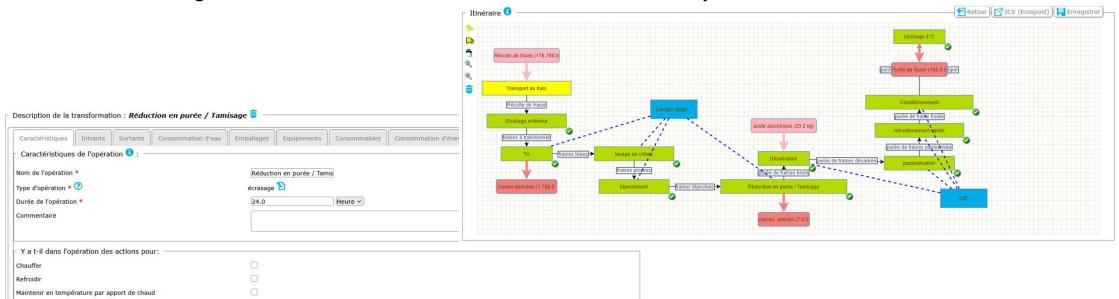
Objectifs de l'étude


- Identifier les hotspots de la filière de transformation conventionnelle pour la production de purée de fraises
- Évaluer l'impact environnemental des filières alternatives, notamment l'ajout d'un jus fermenté ou la fermentation directe

Objectifs opérationnels

- Tester les développements de InOut pour les ACV des procédés de transformation
- Tester le potentiel d'InOut pour accompagner des utilisatrices non praticiennes ACV

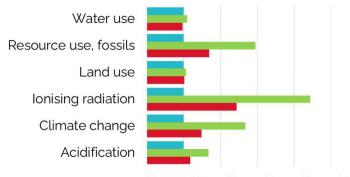
La purée de fraise


(l'un des fruits les plus transformés : 8 000 produits contenant de la fraise sur le marché français, OpenFoodFacts)

Utilisation de MEANS InOut

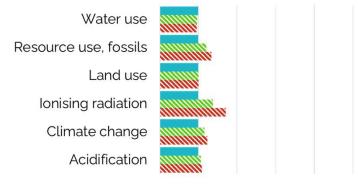
- Evaluation des impacts environnementaux par Analyse du Cycle de Vie
- InOut
 - ▶ Pour guider la collecte des données et saisir l'inventaire du cycle de vie

► Export de l'inventaire vers Simapro pour la caractérisation des impacts


Maintenir en température par apport de froid

Résultats

- Conventionnal
- Including fermented juice addition
- Including strawberry fermentation


Based on hot spots analysis, we proposed modifications of the processing routes to limit their impact:

- Reduced fermentation time of the fermented juice (72 → 24 h)
- Reduced added fermented juice quantity (3-fold reduction)
- Reduced added ferment quantity (-0,3 log)

0% 100% 200% 300% 400% 500%

Relative environmental impact of alternative routes compared with the conventional route.

0% 100% 200% 300% 400% 500%

Relative environmental impact of alternative routes compared with the conventional route.

Reduction of environmental impact \rightarrow same order of magnitude for the 3 processing routes, except for ionising radiation.

Atouts et limites de MEANS InOut

Licence MEANS académique

ATOUTS

- Les non expertes ACV ont très bien pris en main l'outil
- Collecte des données très facilitée
- Saisie des données adaptée au formalisme des experts en génie des procédés et sciences des aliments
- Vocabulaire guidé par l'ontologie PO2-TransformON
- Export vers Simapro en incluant les allocations

LIMITES

- Certains besoins ne sont pas encore couverts par les fonctionnalités actuelles (ex. assembler différentes branches de procédés)
- Certains formulaires de saisie des données ne couvrent pas encore tous les cas d'usage possible
- Le vocabulaire PO2-TransformOn doit être enrichi
- Export vers Simapro ou OpenLCA uniquement

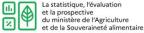
Merci pour votre attention

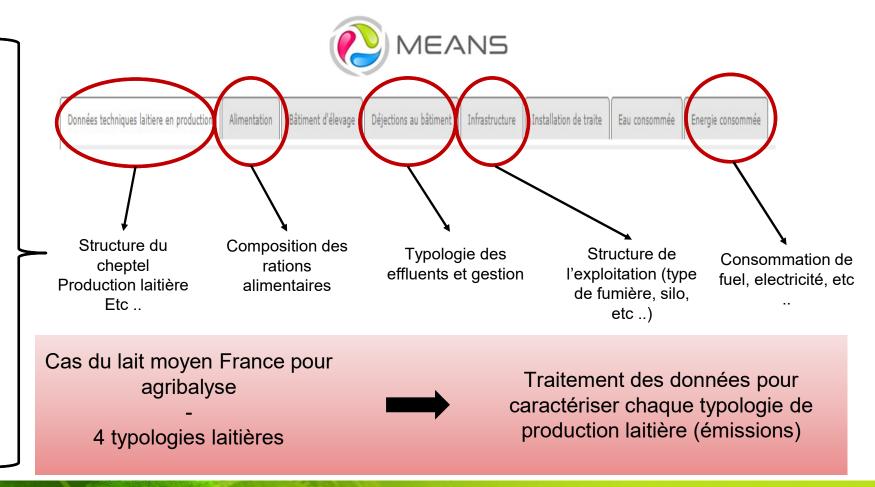
Témoignage utilisateur MEANS InOut

Maxime FOSSEY - Responsable projets évaluation environnementale - IDELE

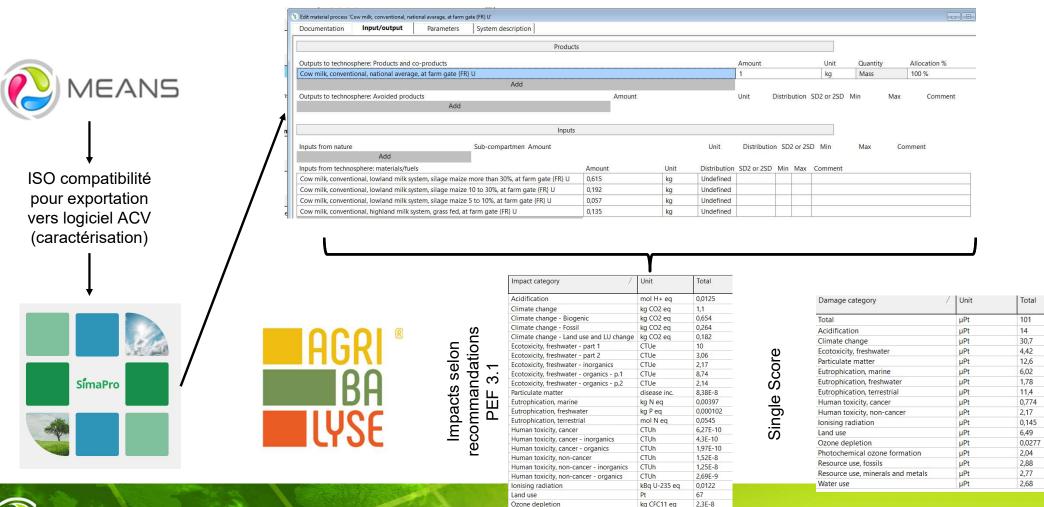
16 Octobre 2025

Introduction - Contexte


- L'Institut de l'élevage (IDELE) est un Institut Technique Agricole (ITA) dédié à la recherche appliquée pour les filières « ruminants » et situé à l'interface des acteurs des filières, de la recherche et des pouvoirs publics. La mission principale de l'institut est d'apporter des connaissances et des solutions techniques aux éleveurs et acteurs des filières pour répondre aux enjeux sociétaux dans un contexte en perpétuelle mutation
- Les ACVs réalisées permettent d'évaluer les performances environnementales des productions agricoles à l'échelle des produits (lait, viande) sur le périmètre exploitation ou filière spécifique (label, groupements, etc ..)
- L'usage de MEANS assure la compatibilité méthodologique entre les évaluations et les normes ISO et recommandations en lien à l'affichage environnemental (PEF)


Présentation d'un cas d'étude concret (Lait France)

agreste



Présentation d'un cas d'étude concret (Lait France)

Photochemical ozone formation

Resource use, minerals and metals

Resource use, fossils

0,00174

2,33E-6

kg NMVOC eq

kg Sb eq

Atouts et limites de MEANS

- Type de Licence MEANS
 - Licence multi-users
 - Possibilité de partager les données
- Les plus et les moins
 - o Les Plus
 - ✓ Environnement facile d'accès
 - ✓ Mise à jour régulière assurant la compatibilité avec les recommandations ISO (ACV), PEF (à des fins d'affichage environnemental)
 - ✓ Transfert facilité vers les logiciels ACV type SIMAPRO

- √ Nécessité de traitement des données depuis les outils ITAs (périmètre de collecte atelier versus catégorie animale)
- ✓ Collecte pouvant être fastidieuse (données plus ou moins facile à obtenir pour décrire les systèmes)

Merci pour votre attention

Formation & accès à MEANS InOut

Sandra PAYEN

16 Octobre 2025

Formation

L'évaluation environnementale par l'ACV avec la plateforme MEANS

Deux éditions par an : Montpellier et Rennes (+ Visio)

Objectifs pédagogiques :

Evaluer les impacts environnementaux de <u>filières agricoles et</u> <u>de transformation à vocation alimentaire</u> avec la méthode ACV et le logiciel MEANS In/Out :

- ► Réaliser un ICV avec MEANS In/Out,
- ► Calculer les indicateurs d'impacts environnementaux à partir de l'ICV généré par MEANS In/Out dans SimaPro©

Modalités pédagogiques :

Alternance d'apports notionnels, d'activités individuelles & collectives, et de cas d'études avec manipulation des logiciels

Prochaine session: du 24 au 27 mars 2026 à Montpellier (& Visio)

Durée: 25h

Tarif: 1260 € HT

Gratuit pour les agents Cirad & INRAE

Contact: sandra.payen@cirad.fr

Accès à MEANS-InOut

Récapitulatif détaillé sur le <u>site de la</u> <u>plateforme</u>

Académique

- Accès gratuit pour utilisation personnelle
- Si utilisation dans le cadre d'un projet : 1500€ / projet

Privé

- Version « Démo » avec fonctions limitées 6 mois, renouvelable 1 fois
- 1500€ / an pour le premier utilisateur puis 350€ / an par utilisateur supplémentaire

Perspectives

16 Octobre 2025

Perspectives

Intégration des dimensions économiques et sociales

Échelle d'étude filières, territoire, exploitation

Liens entre les outils EMC

Communauté d'utilisateurs

Couverture géographique (modèles)

Nouvelles filières & systèmes complexes

Régionalisation plus fine

Interopérabilité outils

Merci pour votre attention

Sondage participants

Thème du prochain Webinaire?



- 1 Allez sur wooclap.com
- 2 Entrez le code d'événement dans le bandeau supérieur

Code d'événement OSRKUJ

Résultat sondage

Q&A

L'enregistrement du webinaire sera mis à disposition

16 Octobre 2025 means-info@inrae.fr